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Abstract  

Hard copy and soft copy pictures often contain artifacts, 
such as noise, banding, and streaking, which can reduce the 
perceived image quality. It is valuable to have a 
quantitative model of human visual performance to 
estimate the visibility of the combined artifact. In this 
paper, we present a vision model to estimate the visibility 
of luminance-only artifacts superimposed on a flat field. In 
this model, the image processing in the human visual 
system is simulated with four components: (1) a front-end, 
low-pass filter to simulate the function of the optics of the 
eyes and the sampling mosaic in the retina; (2) a 
compressive, nonlinear operation in the space domain to 
simulate light adaptation in the retina; (3) a compressive, 
nonlinear operation in the spatial frequency domain to 
simulate frequency masking at a cortical level; and (4) a 
local, linear summation, followed by a Minkowski 
summation, to derive the perceptible visual signal strength. 
Psychophysical data with soft copy stimuli were collected 
to test the model. There were 7 test patterns of different 
artifact types. Each of the patterns was manipulated and 
tested at 2 mean luminance levels, 3 contrast levels, and 2 
viewing distances, totaling 12 conditions. The artifact 
visibility of each stimulus was described by the 
detectability index (d'). The current model is reasonably 
accurate to fit the data with a residual RMS error of 0.29 
and accounts for 98% of the variance in the measured d' 
values.  

Introduction 

Photographic prints usually contain undesirable artifacts; 
such as banding, streaking, mottle, coalescence, dithering, 
and random noise, etc. If the artifacts are visible to human 
observers, they can reduce the perceived image quality of 
the pictures. Therefore, a method of how to estimate and 
predict the visibility of the artifacts is of value to the 
imaging and photographic industry. 

Usually, one can use either subjective methods or 
objective, computational models to assess the visibility of 
any artifacts. Subjective methods are straightforward and 

have been widely used in the image quality evaluation. 
Many subjective studies have been reported in the 
literature for evaluating banding visibility.1,2 The 
disadvantage associated with subjective methods, however, 
is that it can be very time consuming for the human 
observers and, hence, very costly. 

Often a large amount of observations are necessary to 
deliver a set of reliable data about the artifact visibility. In 
contrast, computational models are more efficient in 
providing repeatable estimates of the visibility for 
specified artifacts.  

The difficulty with the computational approach is the 
development of a model that closely matches human visual 
performance. Artifact patterns can have different 
structures, and this difference can lead to different 
visibility. Furthermore, the visibility of the artifact is a 
function of many variables, such as contrast, mean 
luminance level, background image, and viewing distance.  

There are several types of computational models. In 
some well-defined engineering problems, the artifact 
patterns contain limited variations. In this case, one could 
develop computational algorithms to capture the 
relationship between the artifact variables and the 
corresponding visibility.3,4 The disadvantage of this type of 
model is the lack of generalizability; this type of model 
often cannot be extended to applications where the 
conditions are not exactly the same as those used to 
construct the model. Sometimes, it is also often important 
to determine the sources of printing defects. This requires 
information on the types of image artifacts that may be 
generated by any imaging system. Along this direction, 
some models such as Kane et al.5 and Donohue et al.,6 
concentrated on how to decompose the patterns into 
different types of artifacts or image structures. The major 
concern of this paper is to estimate the overall visibility of 
luminance-only artifacts that are superimposed on a flat 
field by using a human vision model.  

Vision modeling is an active research area; human 
vision knowledge has been widely implemented in 
computational models.7-9 Nevertheless, the existing models 
have been tested against very limited psychophysical data. 
The purpose of the current research is to test and refine the 
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Yang model9 and to make the model estimation consistent 
to our new experimental data with regard to artifact 
visibility. In the experimental test, visual stimuli, i. e., the 
artifact patterns, included seven different spatial structures 
(see Fig. 1 for two samples of the seven patterns). We also 
manipulated contrast, mean luminance level, and viewing 
distance to cover a broad range of viewing conditions. 

 

 

 

Figure 1. Examples of two artifact patterns that are 
superimposed on flat fields of different colors. The pattern shown 
on the left panel is dominated by banding-like artifacts on a 
green field, and the pattern shown on the right panel is 
dominated by 2D noise on a purple field. 

Implementation of Human Visual Image 
Processing 

Human vision models have been developed to simulate the 
underlying mechanisms of the visual system and thus to 
provide an estimate of visual performance for detecting 
and discriminating visual targets. The most commonly 
used components in a vision model are a front-end, band-
pass spatial frequency filter and Gabor-like frequency 
channels.10-12 The band-pass filter is to simulate the shape of 
contrast sensitivity functions (CSFs) on an assumption that 
the shape originates from the retina. Yang and Makous13 
suggest that the drop of CSF at low spatial frequency is 
caused by the effect of frequency masking from a zero 
frequency component. Along this thought, the front-end 
frequency filter is likely to result in a low-pass shape and, 
consequently, Yang9 developed an algorithm to simulate 
visual image processing with three functional components: 
(1) a front-end, low-pass filter to simulate the function of 
the optics of the eyes and the sampling mosaic in the 
retina; (2) a compressive nonlinear operation in the space 
domain to simulate light adaptation in the retina; and (3) a 
compressive, nonlinear operation in the spatial frequency 
domain to simulate frequency masking at a cortical level as 
schematized in Fig. 2 and explained in the following 
sections.  

Front-End, Low-Pass Filtering 
The optical lens of the eyes, and the sampling mosaic 

in the retina, has the role of attenuating high spatial 
frequency components in an image. As a result, the 
combined front-end, low-pass filter is approximated here 
by: 

,)+= } /{-(exp)( 00 fLfMTF δα     (1) 

where L0 is the mean luminance of the visual pattern, f the 
spatial frequency, α0  a parameter specifying the rate of 
attenuation, and it can be varied to fit individual difference 
and viewing conditions. δ is a correction term to show the 
effect of the mean luminance on the low-pass filter and 
was set to 0.013.  
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Figure 2. The schematized framework of visual image processing. 

Retinal Compressive Processing  
This step is to simulate light adaptation in the retina to 

show that the visual system is adaptively reducing 
sensitivity to incoming signals when the retina is exposed 
to high-intensity signals. Light adaptation effects are 
spatially localized.14 Here we assume that the adaptation 
pools are constrained by an aperture window, which is 
approximated here by a Gaussian function: 
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where rg is the standard deviation of the aperture and was 
set to 1 arc min. The pooled adaptation signal Ig is the 
convolution of the low-passed input image Ic with the 
window Wg. The retinal image representation IR is the 
output of a compressive nonlinearity, as assumed here a 
modified Naka-Rushton equation: 
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where n1 and I1 are the parameters that represent the 
exponent and the semi-saturation constant of the Naka-
Rushton equation, respectively.  
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Cortical Compressive Processing  
To capture the frequency- and orientation-specific 

nonlinearity of the cortical cells, the image IR is converted 
from a spatial domain representation to a spatial frequency 
domain representation via a Fourier transform to T(fx, fy). 
Here fx and fy are spatial frequencies in x and y directions, 
respectively. Cortical nonlinear property is usually 
described by frequency masking. In the current model, we 
assume Tm(fx, fy), the signal strength in the masking pool, 
being the convolution of the absolute signal amplitude 
|T(fx, fy)|, and an exponential window function: 

Wc(fx, fy) = exp[-(fx

2 + fy

2)0.5/σ],    (4) 

where σ  correlates with the extent of the frequency 
spreading. After applying the same form of compressive 
nonlinearity as in the retina, the cortical signal is expressed 
as: 
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where n2 and I2 are parameters that represent the exponent 
and the semi-saturation constant of the Naka-Rushton 
equation for the cortical, nonlinear compression, 
respectively.  

This model was able to simulate the change of CSF 
with mean luminance level after adding a decision stage 
that is simply a Minkowski summation of the cortical 
signal Tc over different frequency components.9 As the 
energy of sinusoidal gratings is localized in the frequency 
domain (the so-called narrow-band stimuli), the summation 
rule is not particularly critical to the model results. 
Conversely, the spectra of current visual patterns contain a 
wide distribution in the frequency domain. The summation 
rule can be critical for delivering final signal strength in 
the decision-making stage. Thus, we have compared 
different summation rules to compute the final signal 
strength. 

Signal Summation in the Decision Stage 
Physiological results with single cells showed that the 

frequency response curves of cortical neurons are quite 
broad; the response bandwidth covers a range of 
approximately 1 to 2 octaves.15 Input signals within this 
range are linearly summed together to derive the neuronal 
response. Accordingly, we assume there is a local linear 
summation stage. For computational convenience, the 
linear summation window is approximated by a square 
window with the side length of w in the 2D spatial 
frequency domain, as suggested by Makous and Yang.16  

Following this linear summation stage, Makous and 
Yang16 add a Minkowski rule to sum up the absolute values 
of each channel activity. This summation is similar to the 
approach taken by investigators such as Watson and 
Solomon12 and Watson.17 Under this operation, every input 
data point has the same weight in computing the model 
output response. 

Minkowski summation is a simple form for evaluating 
the overall signal strength. It is hard to claim this is the 
only or the best approach to compute the output visual 
response. In the current implementation, we explored a few 
variations of the summation. In one implementation, the 
output signal is the weighted sum of the absolute channel 
responses by a Gaussian window with a standard deviation 
of σw, where the input signals that are located at a far 
distance in the 2D frequency domain have very small 
weights to the output signal. Furthermore, the final visual 
response is given by the maximal value of the output 
signals.  

Other Model Refinements 
It was reported that the amount of spatial frequency 

spread in the visual processing reduces as the field size 
increases, following an empirical formula:18 

σ = 0.042 + k/D,          (6) 

where D is the field size in unit of arc degrees and k is a 
constant with a value of 0.64.18 In the current experiment, 
the field size was manipulated by changing the viewing 
distance, while keeping the physical display area constant. 
We inserted Eq. (6) to Eq. (4) to reflect the effect of the 
field size on the frequency spreading and, thus, the 
masking pool size. 

The second refinement is on the expression of the 
compressive, nonlinear functions. Nonlinear functions have 
been commonly used in vision models, such as the divi-sive, 
nonlinear normalization process used by Heeger,19,20 Foley,21 Itti 
and Koch.22 In those models, the exponent in the numerator is 
set to be different from the exponent in the denominator. In the 
current model refinements, we followed this approach by 
replacing n1 with nn1 in the numerator and nd1 in the 
denominator in Eq. (3), and replacing n2 with nn2 in the 
numerator and nd2 in the denominator in Eq. (5). After this 
change, the model is more flexible and is able to fit a variety 
of experimental data. 

Psychophysical Data 

Psychophysical data with softcopy stimuli were collected 
to test the model. There were 7 test patterns, each with a 
different artifact type (see Fig. 1 for examples). Each of the 
patterns was further manipulated and tested at 2 mean 
luminance levels, 3 contrast levels, and 2 viewing 
distances, totaling 12 conditions. 

Methods 
The experiments were run on a Power Mac G4 

computer with a 24” monitor (Sony Trinitron Color 
Graphic Display). The monitor has 8 bits of gray level for 
each of the R, G, and B channels, and the luminance of the 
displayed image was linearlized to the image code value 
after applying a lookup table. Experimental software was 
developed in MATLAB using the extensions provided by 
the high-level Psychophysics Toolbox.23 The screen 
resolution was set to 1280 x 1024 pixels.  
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Table 1. Characteristics of the 7 Visual Patterns 
Pattern # Luminance 

(cd/m2) 
CIE_x CIE_y RMS 

contrast 
P1 37.22 0.282 0.401 0.0502 
P2 58.88 0.257 0.301 0.0218 
P3 27.44 0.258 0.262 0.0657 
P4 30.52 0.283 0.292 0.0832 
P5 27.88 0.272 0.248 0.0638 
P6 52.18 0.375 0.291 0.0187 
P7 30.40 0.278 0.282 0.1567 
 
 
Visual stimuli were created from 7 scanned patches 

that were printed on inkjet printers. The original patterns 
have different colors, luminance levels, and artifact types 
that look like banding or 2D noise. As the current model 
does not deal with color detection, we kept only luminance 
artifacts in the stimuli. The artifact contrast maps were 
scaled equally over the R, G, and B channels. Table 1 
shows mean luminance level, CIE x and y coordinates, and 
RMS contrast of the 7 patterns used in the experiment. For 
each original pattern, 8 different versions of the images 
were created by using a luminance multiplier of 1 or 0.1 
and a contrast multiplier of 1, 0.5, 0.25, or 0.  

Ten observers with normal or corrected to normal 
vision participated in the experiment. Observers were 
instructed to give ratio scores on the visibility of the 
artifact patterns. Two anchor points were added in the 
rating procedure: 0 for uniform fields and 5 when the 
pattern was slightly detectable. Any positive number could 
be used to rate the pattern visibility. Furthermore, the 
observers were shown a reference image, i.e., a sinusoidal 
grating of 10% contrast at the start of the experiment. The 
reference image was told to have a rating of about 50.  

The experiment was run in a darkened room. A given 
session of the experiment included 2 separated blocks of 
trials, with the luminance multiplier being either 1 or 0.1. 
Within each block, there were 28 different stimuli (i.e., 7 
patterns x 4 contrast levels) that were displayed in pseudo-
random sequences. Furthermore, each stimulus was 
repeated 10 times within a block. Each observer took part 
in 2 sessions of the experiment on different days. In the 
first session, the viewing distance was 167 cm and the 
viewing field size with 1280 x 1024 pixels was 12.5 x 10.0 
arc degrees. In the second session, the viewing distance 
was 334 cm and the field size was 6.4 x 5.1 arc degrees. 

Results 

For each observer, there were 10 visibility-rating scores for 
each visual stimulus at any fixed viewing distance, 
contrast, and mean luminance. These raw scores were used 
to calculate the d' values, that are equivalent to just 
noticeable difference, of the experimental conditions based 
on the overlap of the score histograms.  

 Figure 3 shows the detectability of seeing the 7 
patterns with the contrast multiplier of 1 (diamonds), 0.5 
(squares), and 0.25 (triangles), at a viewing distance of 167 
cm. The top panel was obtained with the mean luminances 
that are specified in Table 1, i. e., with a luminance 
multiplier of 1. The bottom panel was with a luminance 
multiplier of 0.1, i. e, the mean luminance of a given 
pattern was 10% of the same pattern in the top panel. The 
detectability has been adjusted after subtracting an offset d' 
value. The offset was the d' values obtained with the zero 
contrast stimulus that was run, otherwise, in the same 
experimental conditions.  
 The results shown in Fig. 4 were obtained with a far 
viewing distance of 334 cm. Furthermore, pattern #2 was 
not tested in this session in the experiment. Other 
conditions are exactly the same as those for Fig. 3.  
 The smaller the detectability, the less visible the 
artifacts on the soft copy display were to the observers. The 
experimental results show that the visibilities of the seven 
patterns are different and, for a given pattern, the visibility 
index is a monotonic function of the contrast. The primary 
aim of this paper is to estimate the visibility value when a 
visual stimulus is known. The curves are the model fits to 
be discussed later. 
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Figure 3. The detectability of 7 patterns with the contrast 
multiplier of 1 (diamonds), 0.5 (squares), and 0.25 (triangles,) at 
a viewing distance of 167 cm. The mean luminance of the 
patterns was either that shown in Table 1 (top panel, or reduced 
to 10% of the Table values (bottom panel). Error bars stand for 
+/-1 standard error of the data over 10 observers.  
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Figure 4. The detectability of 6 patterns with the contrast 
multiplier of 1 (diamonds), 0.5 (squares), and 0.25 (triangles,) at 
a viewing distance of 334 cm. The mean luminance of the 
patterns was either that shown in Table 1 (top panel, or reduced 
to 10% of the Table values (bottom panel). Error bars stand for 
+/- 1 standard error of the data over 10 observers.  
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Figure 5. A comparison of detectability over viewing distance 
and mean luminance level with 6 artifact patterns at the contrast 
multiplier of 0.5. The viewing distance was either 167 cm (near) 
or 334 cm (far), and the luminance multiplier was either 1 or 0.1.  

 
 
The effects of the pattern and contrast differences on 

the visibility are easy to see from Figs. 3 and 4. However, 
these figures do not clearly show the visibility differences 
caused by viewing distance and mean luminance level. 
Thus, we plotted Fig. 5 to compare the effects of viewing 
distance and mean luminance level directly at a median 
contrast multiplier of 0.5. In the coded caption, “near” 

refers to a viewing distance of 167 cm, and “far” refers to 
the distance of 334 cm. The number following the dash is 
the luminance multiplier, which is 1 or 0.1 times the 
pattern luminance. As the plot shows, the detectability 
decreases as viewing distance increases or as mean 
luminance decreases. These trends are consistent with the 
CSF behavior at median and high spatial frequencies, 
where CSF reduces as spatial frequency (or viewing 
distance) increases and as luminance decreases.24 The 
results at contrast multiplier 1 and 0.25 show a similar 
trend, and they are not plotted here. 

Model Fits 

Some procedures for fitting the model results with the 
experimental data need to be specified here. The 
framework of the vision model is described in the model 
section. To estimate the visual response to a visual 
stimulus, the first step is to pre-process the input digital 
image in order to capture its luminance distribution in units 
of cd/m2. Furthermore, it is known that soft copy displays 
usually contain veiling glare.25 The estimated veiling glare 
in our display is about 2% of the mean luminance of a 
displayed image, and this amount is added to the images. 
Next, the luminance-coded image is entered to the model 
algorithm to derive its cortical representation. Finally, the 
signal entered to the decision-making stage is a frequency 
difference map:  

Sd(fx, fy) = T1(fx, fy) – T0(fx, fy),    (7) 

where T1 and T0 are the cortical representations of the 
stimulus and a reference image that are determined by Eq. 
(5) In the current case, the reference image is the uniform 
background field. 

To fit the model with the data, one also needs to find 
an appropriate conversion of the visual response to visual 
detectability and to obtain the model parameter values. 
Based on a hypothesis that the perceptual, linear detectable 
difference is proportional to the logarithmic transform of 
the perceptual response magnitude, we have a relationship 

d' = log(ρ Rc + 1),           (8) 

where ρ is a constant, and Rc is the model-based visual 
response from the decision stage. Furthermore, we used a 
MATLAB routine fminsearch to search for the appropriate 
parameter values for an optimal fit of all the experimental 
data simultaneously. 

The curves shown in Figs. 3 and 4 are the obtained 
model fits to the experimental data, with a residual RMS 
error of 0.29, and accounts for 98% of the variance in the 
experimental data.  

We also explored two additional decision summation 
rules for the fit to the experimental data as shown in Figs. 3 
and 4. The simplest approach is to apply Mikowski 
summation to the absolute value of the frequency 
difference map as determined by Eq. (7). The resulting 
optimal fit has a residual RMS error of 0.34, which is 
higher than the RMS error for the fit shown above. The 
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optimal exponent for the summation is 1.22. Another 
approach is to sum the frequency difference map linearly 
together within square windows. In this case, the absolute 
value of the signal is further summed with a Gaussian 
weighting function. The final, visual response is given by 
the maximal value of the output signals. After 
implementing this decision summation rule, the obtained 
error of the fit was 0.31, which has an error level that is in 
the middle of the other error produced by the other two 
methods. 

Conclusions 

1. The experimental results show that artifact visibility 
increases as contrast or mean luminance increases, and 
it decreases as viewing distance increases. These 
changes are consistent with our intuition. 

2. The modified vision model is able to describe the 
artifact visibility at both threshold level and 
suprathreshold levels for a variety of viewing 
conditions, including different artifact patterns, 
illumination and contrast levels, and viewing 
distances. The residual RMS error of the best-model fit 
to the total 78 experimental data was 0.29, in terms of 
the detectability index d'. 

3. We compared three summation rules in the decision 
making stage: a) Minkowski summation; b) linear 
summation within square windows followed by 
Minkowski summation; and c) linear summation 
within square windows followed by a weighted 
Gaussian summation. The amount of residual errors in 
fitting current experimental data are similar for the 
three methods, with the case b) method providing the 
smallest residual RMS error of 0.29. 

4. Some of the model parameter values are quite different 
from those obtained in the previous fits with other 
experimental results.9 This is an area that requires 
more attention in further model comparison. 

Acknowledgments 

The authors thank Dr. Michael Miller for helpful 
comments on an early version of the paper. We thank the 
observers who participated in the experiment. 

References 

1. C. Cui, D. Cao, and S. Love, IS&T 2001 PICS Proc., pg. 84 
(2001). 

2. C. Cui, L.G. Hassebrook, C. Guan, and S. Love, IS&T 2002 
PICS Proc., pg. 99 (2002). 

3. D. R. Rasmussen, E. N. Dalal, and K. M. Hoffman, IS&T 
2001 PICS Proc., pg. 90 (2001). 

4. P. J. Kane, T. F. Bouk, P. D. Burns, and A. D. Thompson, 
IS&T 2000 PICS Proc., pg. 79 (2000).  

5. B. W. Keelan, Handbook of image quality, New York, NY, 
Marcel Dekker (2002). 

6. K. D. Donohue, M. V. Venkatesh, and C. Cui, IS&T 2002 
PICS Proc., pg. 42 (2002).  

7. X. Feng, J. Speigle, and A. Morimoto, IS&T 2002 PICS 
Proc., pg. 5 (2002).  

8. M. Lian, Q. Yu, and D. W. Couwenhoven, IS&T 2002 PICS 
Proc., pg. 11 (2002).  

9. J. Yang, SPIE Proc., 4662, pg. 84 (2002). 
10. E. Peli, Optom. Vis. Sci., 69, pg 15 (1992).  
11. S. Daly, SPIE Proc., 1666, pg. 2 (1992).  
12. A.B. Watson and J.A. Solomon, J. Opt. Soc. Am. A, 14, pg. 

2378 (1997).  
13. J. Yang and W. Makous, Vis. Res., 34, pg. 2569 (1994). 
14. M. M. Hayhoe and M. V. Smith, Vis. Res., 29, pg. 457 

(1989).  
15. R. L. De Valois and K. K. De Valois, Spatial Vision, New 

York, Oxford University Press, (1988). 
16. W. Makous and J. Yang, OSA Annual Meeting, pg. 52 

(2000). 
17. A. B. Watson, Optics Express, 6, pg. 12 (2000).  
18. J. Yang and W. Makous, Vis. Res., 37, pg. 1917 (1997).  
19. D. J. Heeger, Visual Neurosci., 9, pg. 181 (1992). 
20. D. J. Heeger, Curr. Dir. Psychol. Sci., 3, pg. 159 (1994). 
21. J. M. Foley, J. Opt. Soc. Am. A, 11, pg 1710 (1994). 
22. L. Itti, C. Koch, and J. Braun, J. Opt. Soc. Am. A, 17, pg. 

1899 (2000).  
23. D. H. Brainard, Spatial Vis., 10, pg. 443 (1997). 
24. F. L. Van Nes and M. A. Bouman, J. Opt. Soc. A, 57, pg. 

401 (1967). 
25. H. Roehrig, In Y. Kim and S. C. Horii (Eds.) Handbook of 

Medical Imaging Vol. 3., Display and PACS, SPIE Press, pg. 
155 (2000).  

Biography 

Jian Yang received a BS degree in Physics from Fudan 
University in 1982, an MS degree in Optics from the 
Shanghai Institute of Optics and Fine Mechanics in 1984, 
and a Ph.D. degree in Experimental Psychology from 
Northeastern University in 1991. He previously worked at 
the University of Rochester as a postdoc fellow and the 
University of Houston as a research associate. He joined 
Eastman Kodak Company in 1998. His current research is 
to apply human vision knowledge to image and 
information processing. 
 
Sharon Field received a BA degree in Psychology with 
Honors from the University of Rochester in 1994. She 
currently works as a Research Technician in the Corporate 
Design and Usability lab at Eastman Kodak Company. Her 
primary interests are in human computer interaction and 
image-quality evaluations.  

 
 
 

IS&T's 2003 PICS Conference

43




